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Purpose of the review

In this review, we will discuss the field of engineered humoral

immunity with an emphasis on recent work using viral vectors

to produce antibodies in vivo. As an alternative to passive

transfer of monoclonal antibody protein, a transgene encoding

an antibody is delivered to cells via vector transduction,

resulting in expression and secretion by the host cell. This

review will summarize the evidence in support of this strategy

as an alternative to traditional vaccines against infection and as

novel therapeutics for a variety of diseases.

Recent findings

Historically, humoral immunity has been engineered through

vaccination and passive transfer of monoclonal antibodies.

However, recent work suggests that vectors can be used to

deliver transgenes encoding broadly neutralizing antibodies to

non-hematopoietic tissues and can mediate long-term

expression that is capable of preventing or treating infectious

diseases. The production of engineered monoclonal antibodies

allows for precise targeting and elimination of aberrant self-

proteins that are characteristic of certain neurodegenerative

disease. This approach has also been successfully used to

combat cancer and addiction in several animal models. Despite

the wide array of expression platforms that have been

described, adeno-associated virus vectors have emerged as

the frontrunner for rapid clinical translation.

Summary

Recent advances in vector-mediated antibody expression have

demonstrated the potential for such interventions to prevent

infection and treat disease. As such, it offers an alternative to

immunogen-based vaccine design and a novel therapeutic

intervention by enabling precise manipulation of humoral

immunity. Success translating these approaches to patients

may enable the development of effective prevention against

previously intractable pathogens that evade immunity such as

HIV, influenza, malaria or HCV and may also enable new

treatment options for neurodegenerative diseases such as

Alzheimer’s disease.
Address

Ragon Institute of MGH, MIT & Harvard, 400 Technology Sq.,

Cambridge, MA 02139, United States

Corresponding author: Balazs, Alejandro B (abalazs@mgh.harvard.edu)
www.sciencedirect.com 
Current Opinion in Immunology 2015, 35:113–122

This review comes from a themed issue on Special section:

immunological engineering

Edited by Darrell Irvine and Hidde Ploegh

http://dx.doi.org/10.1016/j.coi.2015.06.014

0952-7915/# 2015 Elsevier B.V. All rights reserved.

Introduction
The humoral immune system is one of the first obstacles

encountered by invading pathogens, thus playing a cru-

cial role in preventing infection and maintaining human

health. Immunological memory, particularly in the form

of pre-existing antibodies, has been shown to form the

basis of protection for nearly all vaccines in use today [1].

This ability to generate memory against previously en-

countered pathogens enabled the first practitioners in

Asia to engineer immunity against smallpox in the fif-

teenth century through a process termed variolation [1].

By intentionally exposing patients to the relatively mild

variola minor, they were able to induce protective immu-

nity that prevented life-threatening smallpox infection by

variola major [1]. Similarly, modern-day vaccines engi-

neer immunity by exposing a patient to inactivated or

attenuated whole pathogens, or recombinant components

of pathogens that are known to elicit protective immuni-

ty. As a result, effective vaccines have been developed

against many of the diseases for which natural infection

results in immunity against re-infection. This practice has

resulted in the global eradication of smallpox [2] and

decreased incidence of diphtheria, measles, mumps, per-

tussis, poliomyelitis, rubella and tetanus [3]. However a

number of diseases for which prior exposure is ineffective

at preventing subsequent disease have proven more

difficult targets. These include intractable pathogens that

evade immunity, such as human immunodeficiency virus

(HIV), malaria, hepatitis C virus (HCV), and influenza A

virus (IAV) as well as complex diseases of self, such as

cancer and neurodegenerative disorders.

Engineered humoral immunity through
passive transfer
Ideally, vaccination elicits a protective cellular and hu-

moral response, however the protection raised by most of

the currently licensed vaccines is largely antibody-depen-

dent [1,4]. Importantly, neutralizing antibodies (nAb)
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alone have been shown to prevent the spread of many

diseases within populations [4,5]. This antibody-based

protection underlies passive transfer, whereby the admin-

istration of sera or purified antibodies into naı̈ve patients

transiently confers immunity. Technological advances in-

cluding the development of hybridoma technology [6] and

the ‘humanization’ of antibodies has spawned a new class

of antibody-based drugs which have demonstrated remark-

able success in the clinic for a wide range of diseases.

While mAbs have several advantages over conventional

small-molecule drugs, there are considerable disadvantages

as well. Currently licensed mAbs have a typical half-life

ranging from two days to one month in vivo [7], necessitat-

ing frequent dosing. However, specific mutations in the

antibody Fc region have been described that prolong half-

life up to five-fold by increasing the affinity of the antibody

for the neonatal Fc receptor (FcRn) [8]. Despite the

potential for less frequent dosing, high concentrations of

most antibodies are necessary to achieve clinical efficacy,

resulting in high materials costs [5,9]. Additionally, anti-

body use is further complicated by the requirement of

cold-chain storage and trained medical personnel for

administration [7], making such therapy difficult to imple-

ment in low-resource areas. For mAb therapy to become

a widely administered intervention on a global scale,

improved delivery approaches will be required.

Vectored antibody gene delivery for infectious
diseases
One alternative to passive transfer utilizes a vector for the

delivery of transgenes encoding previously characterized

antibodies. These transgenes direct the production of

mAbs in non-hematopoetic cells, which secrete mAbs

into the circulation or the local environment. A wide

variety of vectors, each with distinct expression profiles,

have been considered for this approach (Table 1).

Naked plasmid DNA offers simplicity of use, lack of

immunogenicity and ease of large-scale production.

Improvements in electroporation techniques has allowed

for enhanced transfection of specific tissues in vivo. Elec-

troporation of various monoclonal antibody transgenes into

muscle has yielded production of mAb light and heavy

chains (i.e. Fab fragments), peaking at 50–200 ng/mL in

mice and 30–50 ng/mL in sheep [10]. Optimization of the

expression plasmid and electroporation conditions yielded

2–3 mg/mL of the VRC01 HIV broadly neutralizing anti-

body (bNAb) in the plasma of mice 12 days post adminis-

tration [11�], demonstrating that electroporation of plasmid

DNA encoding antibody can be used to rapidly produce

mAb in vivo. However, the modest concentrations and

transient nature of expression obtained with existing pro-

tocols limit the clinical potential of this technique.

Viruses have been exploited as vectors for many years

owing to their highly evolved mechanisms for efficient
Current Opinion in Immunology 2015, 35:113–122 
delivery of genetic material to host cells. Lentiviral vec-

tors, consisting of an extensively modified HIV-1-derived

genome pseudotyped with vesicular stomatitis virus

(VSV) G protein, represent an attractive means of inte-

grating transgenes into the host genome, enabling long

term gene expression in a wide variety of both dividing

and nondividing cells. Such vectors have been used to

transduce primary hematopoietic stem cells (HSC) with a

transgene encoding the HIV bNAb b12, allowing for their

differentiation into plasmablasts that secreted b12 in vitro
[12]. Using a similar approach, B cells were engineered to

secrete HIV bNAb 2G12 in a humanized mouse model,

achieving concentrations of approximately 40 ng/mL in

plasma, which was sufficient to inhibit HIV infection in
vivo [13]. However, all of these studies utilized ex vivo
transduction, making widespread implementation of this

approach challenging.

While lentivirus is well suited for long-term expression of

mAb, adenoviral vectors have been shown to exhibit

transient, but rapid gene expression ideal for responding

to infectious disease outbreaks. Adenovirus serotype 5

(Ad5) encoding Palivizumab, a respiratory syncytial virus

(RSV) mAb, produced detectable antibody expression as

early as four days post-transduction and resulted in a

5.4 fold decrease in RSV titers in the lung four days

post-challenge as compared to controls [14]. Ad5 has also

been used to express a single-domain antibody specific for

H5N1 influenza A virus (IAV) hemagglutinin (HA),

which protected mice when administered 14 days prior

to, or even 48 h after, infection [15�]. In another study, a

mAb targeting the protective antigen of Bacillus anthracis
was delivered by Ad5 that protected mice from toxin

challenge between 1 day and 8 weeks post-administra-

tion, but which was no longer protective at 6 months [16].

Adeno-associated virus (AAV) has never been associated

with any disease in humans and recombinant vectors

derived from AAV (rAAV) result in stable gene expression

in the absence of integration through formation of extra-

chromosomal concatamers of the delivered transgene

sequences [17]. The serotype used to package the vector

strongly influences its ability to transduce different tissues

[17,18] and has been shown to play a significant role in the

immunogenicity of the vector in various animal models

[19,20]. AAV1 delivering lipoprotein lipase (LPL) was

recently approved in Europe as the first ever gene therapy

product for humans [21] and recent clinical trials testing

AAV8 for the delivery of Factor IX for hemophilia has met

with considerable success [22��]. Given their clinical effi-

cacy and favorable expression profile, AAV vectors have

been extensively characterized as a platform for the deliv-

ery of mAbs in vivo. However, the packaging capacity of

AAV is limited to 5 kb, presenting a significant obstacle to

the efficient expression of both heavy and light chain. As a

result, some groups have turned to smaller bivalent single

chain antibodies (scFv) or immunoadhesins, chimeric
www.sciencedirect.com
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Table 1

Summary of monoclonal antibody expression vectors

Vector Ab type Species

of Fc

Isotype Promoter Furin/2A

cleavage

Animal

model

Vector dose Route Ab clone Peak serum

concentration

References

HIV Plasmid Fab Mouse IgG1 CMV N/A BALB/c mice 25 mg IM VRC01 3.3 mg/mL Muthumani

et al. [11�]

Lentivirus Full-length Human IgG1 Human

m heavy

chain

Y NSG

humanized

mice

MOI 1000 Ex vivo

B cell

transduction

b12 >1 mg/mL Luo et al. [12]

Lentivirus Full-length Human IgG1 hPGK Y NSG

humanized

mice

100 ng p24 Ex vivo

B cell

transduction

2G12 40 ng/mL Joseph

et al. [13]

rAAV2 Full-length Human IgG1 CMV, EF1a N Rag-1 mice 5 � 1011 GC IM b12 8 mg/mL Lewis

et al. [29]

scAAV2 Immunoadhesin Rhesus IgG2 CMV N/A Rhesus

macaques

2 � 1013 GC IM 4L6 400–500 mg/mL Johnson

et al. [30]5L7 200–300 mg/mL

rAAV8 Full-length Human IgG1 CASI Y NSG

humanized

mice

1 � 1011 GC IM b12 100 mg/mL Balazs

et al., 20122G12 >250 mg/mL

2F5 20 mg/mL

VRC01 >250 mg/mL

4E10 20 mg/mL

rAAV8 Full-length Human IgG1 CASI Y NSG and BLT

humanized

mice

1 � 1011 GC IM b12 115 mg/mL Balazs

et al. [32��]VRC01 100 mg/mL

VRC07 130 mg/mL

3BNC117 24 mg/mL

12A12 23 mg/mL

VRC-PG04 30 mg/mL

VRC07G54W 74 mg/mL

NIH45-46G54W 40 mg/mL

PGT121 256 mg/mL

PGT128 50 mg/mL

PG9 390 mg/mL

rAAV8 Full-length Human IgG1 Human

thyroglobulin

Y NSG

humanized

mice

2.5 � 1011 GC IV 10-1074 300 mg/mL Horwitz

et al. [33��]2.0 � 1011 GC IV 3BNC117 20 mg/mL

scAAV1 Full-length Rhesus IgG2 CMV N/A Rhesus

macaques

2.5 � 1013 particles IM eCD4-Ig 75–180 mg/mL Gardner

et al. [34��]1 � 1013 particles 3BNC117 –

PGT121 –

10-1074 –

NIH45-46 –
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Table 1 (Continued )

Vector Ab type Species

of Fc

Isotype Promoter Furin/2A

cleavage

Animal

model

Vector dose Route Ab clone Peak serum

concentration

References

Influenza Ad5 Single-domain – – CMV N BALB/c 1 � 108 PFU

1 � 107 PFU

1 � 106 PFU

Intranasal aHA-7 – Tutykhina

et al. [15�]

rAAV8 Full-length Human IgG1 CASI Y BALB/c and

NSG mice, ferrets

1 � 1011 GC (mice)

5 � 1012 GC/kg (ferret)

IM F10 200 mg/mL

(mice)

Balazs

et al. [37��]

CR6261 10–100 mg/mL

rAAV9 Immunoadhesin Human IgG1 CAG N/A BALB/c mice, f

erret and rhesus

macaques

1 � 1011 GC (mice)

1 � 1012 GC (ferret)

1 � 1013 GC (rhesus)

Intranasal F16 0.5 mg/mL

(nose),

2.0 mg/mL (lung)

Limberis

et al. [38�]

Malaria rAAV8 Full-length Human IgG1 CASI Y C57BL/6NCr 1 � 1011 GC IM 2A10 >1000 mg/mL Deal

et al. [35��]2C11 100–500 mg/mL

HCV rAAV9 Full-length Human IgG1 CASI Y Rosa26-Fluc,

FNRG

humanized

mice

1 � 1011 GC IM AR3A 1000–3000

mg/mL

de Jong

et al. [36��]AR3B

AR4A

RSV Ad5 Full-length Mouse IgG1 CMV N BALB/c mice 5 � 1010 PFU IV Murine

palivizumab

precursor

– Skaricic

et al. [14]rAAVrh.10 Y 1 � 1011 GC Intrapleural

Anthrax Ad5 Full-length Mouse IgG1 CMV N C57BL/6 mice 1 � 1011 PFU IV 14B7-1H – De et al.

[16]rAAVrh.10 Y 1 � 1011 GC Intrapleural

HD rAAV2 scFv intrabody – – CBA N/A C57BL/6,

BACHD,

R6/2,

N171-82Q

and YAC128

mice

1 � 1010 GC Intrastriatal VL12.3 Happ1 – Southwell

et al. [45]

rAAV1 scFv intrabody – – – N/A B6.HDR6/1 mice 2 � 1010 GC Intrastriatal C4 – Snyder-

Keller [46]

AD rAAV1 scFv – – CMV N/A 3� Tg-AD mice 1 � 109 GC Hippocampal Ab-scFv – Ryan

et al. [48]

rAAV1 scFv – – CAG N/A C57BL/6 and

TgAbPPswe/

PS1dE9 mice

3 � 1010 GC Intracranial scFv59 – Kou

et al. [23]rAAV2

rAAV5

rAAV2 scFv – – CMV N/A APPswe/

PS1dE9 mice

5 � 1010 GC IM,

Intraventricular

scFv – Wang et al.

[24,49,54]

rAAV1 Full-length – – CMV Y Tg2576 mice 3 � 1010 GC IM IIA2 300 mg/mL Shimada

et al. [50�]

ALS scAAV1 scFv – – CMV N/A SOD1G93A,

GAP-43-luc/

gfp/SOD1G93A mice

3 � 109 GC Intrathecal D3H5 – Patel et al.

[25�]
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Table 1 (Continued )

Vector Ab type Species

of Fc

Isotype Promoter Furin/2A

cleavage

Animal

model

Vector dose Route Ab clone Peak serum

concentration

References

Prion rAAV9 scFv – – – N/A CD1 mice 1.4 � 1012 GC Intracranial D18 – Moda et al.

[52]

rAAV2 scFv – – CMV N/A Mice 9 � 109 GC Intracranial D18 – Wuertzer

et al. [26]– – 3:3

– – 6:4

– – 6:6

Cancer rAAV8 Full-length Rat IgG1 CAG Y NCr nu/nu mice 2 � 1011 GC IV DC101 >8000 mg/mL Fang et al.

[27]

rAAV8 Full-length Rat IgG1 ZgIL-2P Y C57BL/6 mice 2.5 � 1011 GC IV DC101 >1000 mg/mL Fang et al.

[28]

rAAVrh.10 Full-length Mouse IgG1 CMV Y C57BL/6 mice 1 � 1011 GC IV 4D5 30–40 mg/mL Wang et al.

[24,54]

rAAV8 scFv Humanized IgG1 CMV N/A SCID-BEIGE 2 � 1011 GC IV h1567 96 mg/mL Han et al.

[56]

Addiction rAAVrh.10 Full-length – – CAG Y BALB/c 1 � 1011 GC IV GNC92H2 – Rosenberg

et al. [58]

rAAVrh.10 Full-length – – CAG Y C57BL/6 mice 1 � 1011 GC IV NIC9D9 1300 mg/mL Hicks et al.

[57]

Abbreviations: rAAV, recombinant aden-associated virus; scAAV, self-complementary adeno-associated virus; Ad5, adenovirus serotype 5; Fab, fragment-antigen binding; scFv, single-chain variable

fragment; CMV, cytomegalovirus; hPGK, human phosphoglycerate kinase promoter; EF1a, elongation factor 1a; N/A, not applicable; MOI, multiplicity of infection; GC, genome copy; PFU, plaque

forming unit; IM, intramuscular; IV, intravenous.
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antibody-like molecules combining the functional domain

with the immunoglobulin constant domain [23,24,25�,26].

However, others have employed heterologous viral

sequences such as foot and mouth disease virus-derived

2A self-processing sequence (F2A) to express full-length

antibodies from a single open reading frame [27], yielding

greater than 1000 mg/mL of sustained mAb serum levels in
vivo [27,28].

The earliest forms of AAV mediated gene antibody

transfer were implemented as a dual-promoter vector

whereby the heavy and light chain genes were transcribed

independently. This yielded up to 8 mg/mL of biologi-

cally active an HIV bNAb for over 6 months in immuno-

deficient Rag mice [29]. In rhesus macaques, expression

of SIV gp120-specific immunoadhesins peaked 3–4 weeks

post transduction at 200 mg/mL and was sustained at

20 mg/mL for at least 4 years [30]. Out of nine monkeys

challenged with SIV one month after AAV administration,

six were completely protected from challenge. The three

immunized macaques that became infected were later

found to have developed an immune response against the

immunoadhesin one week prior to challenge, suggesting

that an anti-immunoadhesin response led to the observed

failure of protection [30]. AAV vectors were also

employed in a similar approach coined ‘Vectored Immu-

noProphylaxis’ (VIP), whereby full-length human IgG

bNAbs against HIV were expressed from an optimized

transgene that utilized the F2A sequence to allow for the

expression of independent heavy and light chains under a

muscle-optimized promoter [31]. This transgene was

packaged with an AAV8 capsid [19], leading to the

production of mAb at serum concentrations greater than

100 mg/mL for at least 52 weeks [31]. Using this system,

two different humanized mouse models were protected

from either IV challenge with a laboratory strain of HIV

[31] or repetitive low-dose vaginal challenge with a more

clinically relevant transmitted founder strain (REJO.c)

[32��]. Decreasing doses of AAV vector led to dose-

dependent antibody expression, enabling a determina-

tion of the minimum protective dose in vivo for a number

of antibodies [31,32��]. AAV-vectored bNAbs have also

been shown to work in conjunction with passive mAb

transfer and HAART to maintain suppression of HIV

replication in humanized mice [33��]. Most recently, a

synthetic fusion of CD4-Ig with a small CCR5-mimetic

sulfopeptide (eCD4-Ig) was delivered by AAV and pro-

tected rhesus macaques from several infectious SHIV

challenges suggesting that AAV-vectored synthetic pro-

teins may be able to create effective HIV prophylaxis

[34��].

In addition to HIV, successful VIP has also been demon-

strated against a number of other infectious diseases.

Recently, sterilizing immunity was generated against a

murine model of Plasmodium falciparum infection, the

malaria parasite responsible for the highest mortality in
Current Opinion in Immunology 2015, 35:113–122 
humans [35��], demonstrating the first known example

where a parasitic disease was prevented by antibodies

alone. Likewise, VIP-mediated expression of bNAbs

against HCV conferred protection against viral challenge

in humanized mice [36��] and was able to abrogate

ongoing HCV infection both in vitro and in
vivo. Additionally, sera taken from mice given VIP

expressing different bNAbs targeting IAV hemagglutinin

(HA), were able to neutralize all H1, H2 and H5 strains

tested, and antibody expression lasted well over a year

post-AAV injection [37��]. Interestingly, protection

against influenza by VIP did not appear to inhibit the

elicitation of novel immune responses, suggesting that

VIP may be capable of augmenting immunity without

abrogating endogenous immune responses [37��]. Nota-

bly, this method also protected immunodeficient and

older mice from disease, representing two particularly

vulnerable human patient populations who are inade-

quately protected by traditional vaccination [37��]. While

intramuscular (IM) injection of AAV for expression of

antibodies has been most common, other routes of ad-

ministration and target sites have also been used success-

fully. One study used AAV9 to deliver IAV bNAb F16 by

intranasal administration, which resulted in protection at

the primary site of challenge [38�]. AAV has also been

used to generate long-term expression of an RSV anti-

body [14]. One study tested a combination of AAV and

Ad5 to generate rapid protection against anthrax that

lasted at least 26 weeks [16].

Vectored antibody delivery for
neurodegenerative diseases
In addition to engineering immunity against infectious

disease, the use of AAV as a means of creating desirable

antibody specificities in vivo enables targeting of ‘self’

proteins that would be difficult or impossible to target

safely through traditional vaccination. As a result, there

has been growing interest in utilizing this approach for the

treatment and prevention of neurodegenerative diseases,

which represent an increasing share of the healthcare

burden in developed nations. For many such diseases,

aggregation of misfolded proteins has been suggested as

the underlying mechanism, making them ideal targets for

mAbs that recognize the misfolded variants and prevent

the formation of these aggregates. Small scFv antibody

fragments lacking the Fc region, including intrabodies

(iAb) that target antigens intracellularly, can distinguish

highly homologous proteins, different conformations of

the same protein and, in the case of some iAb, target

proteins to distinct cellular compartments [39–41]. The

genes encoding these scFv have been delivered by AAV

vectors, representing a powerful new tool for treating or

preventing neurodegenerative disease [42,43].

Huntington’s disease (HD) is caused by a mutation in the

huntingtin protein (HTT) and is a model for numerous

neurodegenerative disorders due to its simple autosomal
www.sciencedirect.com
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dominant inheritance. Several anti-HTT iAbs have

been generated [44] and two were tested in transgenic

HD models using intrastriatal AAV2 delivery [45]. Of

the iAbs tested, Happ1 ameliorated neuropathology in

cell lines and conferred significant beneficial effects in a

variety of motor and cognitive assays, significantly

prolonging life span by 10 weeks in a mouse model of

disease [45]. Another group delivering iAb C4 via intras-

triatal AAV1 delivery demonstrated that early treatment

of an HD mouse model, prevented cells from exhibiting

nuclear aggregates and delayed aggregate accumulation

[46].

Alzheimer’s disease (AD) is a disorder characterized by

the diffuse loss of neurons and accumulation of amyloid

beta proteins (Ab) in the brain. Recently, scFvs have

been developed that target Ab, which could reduce Ab

burden and possibly alleviate symptoms [47]. A transgen-

ic mouse model for AD, given an intrahippocampal infu-

sion of AAV1 encoding an Ab-scFv exhibited lower levels

of insoluble Ab, increased numbers of microglia and

demonstrated improved cognitive function [48]. While

most studies have administered AAV vectors directly into

the brain, this may pose a safety risk as intraventricular

delivery of AAV5 led to an increase in hemorrhaging [23].

As an alternate route, IM injection of AAV2 expressing an

Ab-scFv was found to be as effective as intracranial

administration in reducing physiologic and behavioral

effects of AD without producing detectable inflammatory

responses or microhemorrhages in the brain [24,49]. In a

separate study, IM injection of AAV1 expressing a full-

length Ab-mAb resulted in sustained anti-Ab levels

above 100 mg/mL in serum that were maintained for

up to 64 weeks post-injection [50�]. These levels were

found to be effective in decreasing Ab levels in the brain

both prophylactically and therapeutically [50�].

Emerging evidence suggests that misfolding of superox-

ide dismutase 1 (SOD1) is a common pathogenic event in

amyotrophic lateral sclerosis (ALS) [51]. AAV encoding

an scFv specific for misfolded SOD1, was injected intra-

thecally into an ALS mouse model, resulting in reduced

neuronal stress, reduced levels of misfolded SOD1 in the

spinal cord and attenuation of motor neuron loss (Table 1)

[25�]. Overall, this led to delayed disease onset and

increased life span that directly correlated with antibody

titer.

Similarly, this approach has also been investigated to

combat prion disease, which is a neurodegenerative dis-

order caused by a conversion of cellular prion protein

(PrPc) into the misfolded, insoluble, PrPsc. Mice inocu-

lated peripherally with infectious prions were given an

AAV vector expressing scFv targeting PrPsc. These mice

exhibited decreased PrPsc burden and delayed onset of

prion pathogenesis as determined by improvements of

clinical signs (Table 1) [26,52].
www.sciencedirect.com 
Vectored antibody delivery for cancer
As a result of an improved understanding of the molecular

basis of cancer, antibody-based drugs have become the

standard of care for many types of tumors. Human epi-

dermal growth factor receptor type 2 (HER2) overexpres-

sion is associated with reduced survival in cases of human

breast cancer. Clinical trials of trastuzumab, an mAb that

targets an extracellular region of HER2, have been suc-

cessful at steady state serum concentrations of greater

than 10 mg/mL [53]. The murine precursor to trastuzu-

mab was encoded in an AAV rh.10 vector [54] and

administered to C57BL/6 mice, resulting in serum con-

centrations near 35 mg/mL within twelve weeks that were

sustained for at least 56 weeks post injection. A single

injection of this vector increased the survival of Balb/c nu/

nu mice injected subcutaneously with Calu-3 tumor cells

over-expressing HER2, demonstrating its efficacy at inhi-

biting cancer in vivo [54].

Similarly, cutaneous T-cell lymphoma (CTCL), exhibits

over-expression of chemokine receptor 4 (CCR4), whose

expression is limited amongst non-malignant cells [55].

AAV8 was used to express a humanized anti-CCR4 mAb

in a tumor mouse model, resulting in reduced CCR4+

tumor growth and increased survival. A single IV injection

resulted in 96 mg/mL of mAb in serum, which was able to

significantly reduce tumor growth and increase life-span

as compared to control animals [56]. While these results

have been promising, clinical translation of vectored

antibody delivery for cancer will require the use of

transient vectors or platforms for regulated mAb delivery.

Vectored antibody delivery for addiction
Substance abuse creates a substantial healthcare burden

and is the target of numerous pharmacological and be-

havioral interventions. Antibodies that target the addic-

tive substance and prevent receptor signaling could offer

a potential treatment, however repeated administration of

mAb protein is impractical. Previous studies showed that

AAVrh.10 expressing a high affinity anti-nicotine mAb

resulted in a serum concentration of 1.3 mg/mL that

lasted for at least 18 weeks [57]. AAV-NIC9D9 mice

had a majority of serum nicotine bound to the Fab within

one minute after challenge with nicotine, resulting in

brain concentrations of nicotine that were only 15% of

what was observed in naı̈ve controls. Importantly, the

expression of this antibody also blocked nicotine-medi-

ated alterations in arterial blood pressure, heart rate and

locomoter activity, demonstrating its ability to obviate the

physiological effects of nicotine [57]. Using a similar

approach against cocaine, AAVrh.10 was engineered to

express the high affinity anti-cocaine mAb GNC92H2

[58], leading to the expression of anti-cocaine antibodies

for at least 24 weeks after IV administration and resulting

in a 31-fold reduction in the ratio of brain to blood cocaine

levels and reduced hyperactivity in treated mice as com-

pared to controls [58].
Current Opinion in Immunology 2015, 35:113–122
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Conclusion
Successful translation of vectored antibody gene delivery

to patients is poised to redefine the landscape of immu-

nological interventions by enabling precise engineering

of the specificity and intensity of a desirable humoral

response. It goes well beyond the ability of traditional

vaccines to enable production of non-natural antibody

architectures capable of discriminating between normal

and aberrant forms of self-proteins. By circumventing the

natural immune system, vectored antibody delivery has

the potential to yield protection regardless of immune-

status or age, allowing it to reach currently vulnerable

populations of patients who cannot respond to vaccines

and offering a possible alterative to existing therapies

delivered by passive transfer.
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